Background
Mobile health (mHealth) apps targeting health behaviors using behavior change techniques (BCTs) have been successful in promoting healthy behaviors; however, their efficacy with sleep is unclear. Some work has shown success in promoting sleep through mHealth, whereas there have been reports that sleep apps can be adverse and lead to unhealthy obsessions with achieving perfect sleep.
Objective
This study aims to report and describe the use of BCTs in mHealth apps for sleep with the following research questions: How many BCTs are used on average in sleep apps, and does this relate to their effectiveness on sleep outcomes? Are there specific BCTs used more or less often in sleep apps, and does this relate to their effectiveness on sleep outcomes? Does the effect of mHealth app interventions on sleep change when distinguishing between dimension and measurement of sleep?
Methods
We conducted a systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to review articles on mHealth app interventions for sleep published between 2010 and 2020.
Results
A total of 12 studies met the eligibility criteria. Most studies reported positive sleep outcomes, and there were no negative effects reported. Sleep quality was the most common dimension of sleep targeted. Subjective measures of sleep were used across all apps, whereas objective measures were often assessed but rarely reported as part of results. The average number of BCTs used was 7.67 (SD 2.32; range 3-11) of 16. Of the 12 studies, the most commonly used BCTs were feedback and monitoring (n=11, 92%), shaping knowledge (n=11, 92%), goals and planning (n=10, 83%), and antecedents (n=10, 83%), whereas the least common were scheduled consequences (n=0, 0%), self-belief (n=0, 0%), and covert learning (n=0, 0%). Most apps used a similar set of BCTs that unfortunately did not allow us to distinguish which BCTs were present when studies reported more positive outcomes.
Conclusions
Our study describes the peer-reviewed literature on sleep apps and provides a foundation for further examination and optimization of BCTs used in mHealth apps for sleep. We found strong evidence that mHealth apps are effective in improving sleep, and the potential reasons for the lack of adverse sleep outcome reporting are discussed. We found evidence that the type of BCTs used in mHealth apps for sleep differed from other health outcomes, although more research is needed to understand how BCTs can be implemented effectively to improve sleep using mHealth and the mechanisms of action through which they are effective (eg, self-efficacy, social norms, and attitudes).