“…Notably, these methods are well suited to handle complicated constraints and possess a low iteration complexity. This makes them very effective in the context of large-scale machine learning problems (see, e.g., Lacoste-Julien et al [54], Jaggi [48], Négiar et al [64], Dahik [26], Jing et al [49]), image processing (see, e.g., Joulin et al [50], Tang et al [75]), quantum physics (see, e.g., Gilbert [41], Designolle et al [30]), submodular function maximization (see, e.g., Feldman et al [33], Vondrák [79], Badanidiyuru and Vondrák [5], Mirzasoleiman et al [60], Hassani et al [45], Mokhtari et al [61], Anari et al [1], Anari et al [2], Mokhtari et al [62], Bach [4]), online learning (see, e.g., Hazan and Kale [46], Zhang et al [86], Chen et al [20], Garber and Kretzu [39], Kerdreux et al [51], Zhang et al [87]) and many more (see, e.g., Bolte et al [6], Clarkson [22], Pierucci et al [70], Harchaoui et al [44], Wang et al [81], Cheung and Li [21], Ravi et al [72], Hazan and Minasyan [47], Dvurechensky et al [32], Carderera and Pokutta [17], Macdonald et al [58], Carderera et al [18], Garber and Wolf [40], Bomze et al [7], Wäldchen et al [80], Chen and Sun…”