2018
DOI: 10.3906/mat-1706-58
|View full text |Cite
|
Sign up to set email alerts
|

Fréchet-Hilbert spaces and the property SCBS

Abstract: In this note, we obtain that all separable Fréchet-Hilbert spaces have the property of smallness up to a complemented Banach subspace (SCBS). Djakov, Terzioglu, Yurdakul, and Zahariuta proved that a bounded perturbation of an automorphism on Fréchet spaces with the SCBS property is stable up to a complemented Banach subspace. Considering Fréchet-Hilbert spaces we show that the bounded perturbation of an automorphism on a separable Fréchet-Hilbert space still takes place up to a complemented Hilbert subspace. M… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?