When a compact quantum group H coacts freely on unital C * -algebras A and B, the existence of equivariant maps A → B may often be ruled out due to the incompatibility of some invariant. We examine the limitations of using invariants, both concretely and abstractly, to resolve the noncommutative Borsuk-Ulam conjectures of Baum-D ' abrowski-Hajac. Among our results, we find that for certain finite-dimensional H, there can be no well-behaved invariant which solves the Type 1 conjecture for all free coactions of H. This claim is in stark contrast to the case when H is finite-dimensional and abelian. In the same vein, it is possible for all iterated joins of H to be cleft as comodules over the Hopf algebra associated to H. Finally, two commonly used invariants, the local-triviality dimension and the spectral count, may both change in a θ-deformation procedure.