Introduction: Although obesity and its biomarkers have been intensively studied, little is known about the metabolomic signature of visceral adiposity independent of insulin resistance that frequently accompanies increased levels of visceral fat. Our study aimed to investigate specific changes in amino acid (AA) levels as biomarkers of increased visceral adiposity independent of insulin resistance, in healthy subjects.
Methods: Forty-two adult women were included in this cross-sectional study. Serum samples were analyzed by AAs targeted metabolomics according to their visceral fat area (<100 cm2 and ≥100 cm2).
Results: By corrected t-test and supervised partial least-squares discriminant analysis (PLS-DA) we identified 4 AAs that were significantly higher in the group with higher visceral fat: proline (variable importance in the projection [VIP] predicted value: 1.97), tyrosine (VIP: 2.21), cysteine (VIP: 1.19), isoleucine (VIP: 1.04; p-values <0.05). Also, glycine was significantly lower in the group with higher visceral fat (VIP: 1.65; p-value <0.05). All AAs identified were associated with visceral fat independent of homeo-static model assessment for insulin resistance (p-value for regression coefficients <0.05).
Conclusion: Metabolic pathways that might be disrupted in persons with increased visceral fat are phenylalanine, tyrosine, and tryptophan biosynthesis; tyrosine metabolism; glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism.