Microplastic pollution is a global issue for the environment and human health. The potential for human exposure to microplastic through drinking water, dust, food, and air raises concern, since experimental in vitro and in vivo toxicology studies suggest there is a level of hazard associated with high microplastic concentrations. However, to infer the likelihood of hazards manifesting in the human population, a robust understanding of exposure concentrations is needed. Infrared and near-infrared microspectroscopies have routinely been used to analyze microplastic in different exposure matrices (air, dust, food, and water), with technological advances coupling multivariate and machine learning algorithms to spectral data. This focal point article will highlight the application of infrared and Raman modes of spectroscopy to detect, characterize, and quantify microplastic particles, with a focus on human exposure to microplastic. Methodologies and state-of-the-art approaches will be reported and potential confounding variables and challenges in microplastic analysis discussed. The article provides an up-to-date review of the literature on microplastic exposure measurement using (near) infrared spectroscopies as an analytical tool, highlighting the recent advances in this rapidly advancing field.