Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Blood flow enables the delivery of oxygen and nutrients to the different tissues of the human body. Drugs follow the same route as oxygen and nutrients; thus, drug concentrations in tissues are highly dependent on the blood flow fraction delivered to each of these tissues. Although the free drug concentration in blood is considered to correlate with pharmacodynamics, the pharmacodynamics of a drug is actually primarily commanded by the concentrations of drug in the aqueous spaces of bodily tissues. However, the concentrations of drug are not homogeneous throughout the tissues, and they rarely reflect the free drug concentration in the blood. This heterogeneity is due to differences in the blood flow fraction delivered to the tissues and also due to membrane transporters, efflux pumps, and metabolic enzymes. The rate of drug elimination from the body (systemic elimination) depends more on the driving force of drug elimination than on the free concentration of drug at the site from which the drug is being eliminated. In fact, the actual free drug concentration in the tissues results from the balance between the input and output rates. In the present paper, we develop a theoretical concept regarding solute partition between intravascular and extravascular spaces; discuss experimental research on aqueous/non-aqueous solute partitioning and clinical research on microdialysis; and present hypotheses to predict in-vivo elimination using parameters of in-vitro metabolism.
Blood flow enables the delivery of oxygen and nutrients to the different tissues of the human body. Drugs follow the same route as oxygen and nutrients; thus, drug concentrations in tissues are highly dependent on the blood flow fraction delivered to each of these tissues. Although the free drug concentration in blood is considered to correlate with pharmacodynamics, the pharmacodynamics of a drug is actually primarily commanded by the concentrations of drug in the aqueous spaces of bodily tissues. However, the concentrations of drug are not homogeneous throughout the tissues, and they rarely reflect the free drug concentration in the blood. This heterogeneity is due to differences in the blood flow fraction delivered to the tissues and also due to membrane transporters, efflux pumps, and metabolic enzymes. The rate of drug elimination from the body (systemic elimination) depends more on the driving force of drug elimination than on the free concentration of drug at the site from which the drug is being eliminated. In fact, the actual free drug concentration in the tissues results from the balance between the input and output rates. In the present paper, we develop a theoretical concept regarding solute partition between intravascular and extravascular spaces; discuss experimental research on aqueous/non-aqueous solute partitioning and clinical research on microdialysis; and present hypotheses to predict in-vivo elimination using parameters of in-vitro metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.