The present work is devoted to the investigation of the 3D Ising-like model in the presence of an external field in the vicinity of critical point. The method of collective variables is used. General expressions for the order parameter and susceptibility are calculated as functions of temperature and the external field as well as scaling functions of that are explicitly obtained. The results are compared with the ones obtained within the framework of parametric representation of the equation of state and Monte Carlo simulations. New expression for the exit point from critical regime of the order parameter fluctuations is proposed and used for the calculation.