We study the translocation of charged star polymers through a solid-state nanopore using coarsegrained Langevin dynamics simulations, in the context of using nanopores as high-throughput devices to characterize polymers based on their architecture. The translocation is driven by an externally applied electric field. Our key observation is that translocation kinetics is highly sensitive to the functionality (number of arms) of the star polymer. The mean translocation time is found to vary non-monotonically with polymer functionality, exhibiting a critical value for which translocation is the fastest. The origin of this effect lies in the competition between the higher driving force inside the nanopore and inter-arm electrostatic repulsion in entering the pore, as the functionality is increased. Our simulations also show that the value of the critical functionality can be tuned by varying nanopore dimensions. Moreover, for narrow nanopores, star polymers above a threshold functionality do not translocate at all. These observations suggest the use of nanopores as a highthroughput low-cost analytical tool to characterize and separate star polymers.