Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Previous studies suggest short-term cognitive benefits of physical activity occurring minutes to hours after exercise. Whether these benefits persist the following day and the role of sleep is unclear. We examined associations of accelerometer-assessed physical activity, sedentary behaviour, and sleep with next-day cognitive performance in older adults. Methods British adults aged 50-83 years (N = 76) without evidence of cognitive impairment or dementia wore accelerometers for eight days, and took daily cognitive tests of attention, memory, psychomotor speed, executive function, and processing speed. Physical behaviour (time spent in moderate-to-vigorous physical activity [MVPA], light physical activity [LPA], and sedentary behaviour [SB]) and sleep characteristics (overnight sleep duration, time spent in rapid eye movement [REM] sleep and slow wave sleep [SWS]) were extracted from accelerometers, with sleep stages derived using a novel polysomnography-validated machine learning algorithm. We used linear mixed models to examine associations of physical activity and sleep with next-day cognitive performance, after accounting for habitual physical activity and sleep patterns during the study period and other temporal and contextual factors. Results An additional 30 min of MVPA on the previous day was associated with episodic memory scores 0.15 standard deviations (SD; 95% confidence interval = 0.01 to 0.29; p = 0.03) higher and working memory scores 0.16 SD (0.03 to 0.28; p = 0.01) higher. Each 30-min increase in SB was associated with working memory scores 0.05 SD (0.00 to 0.09) lower (p = 0.03); adjustment for sleep characteristics on the previous night did not substantively change these results. Independent of MVPA on the previous day, sleep duration ≥ 6 h (compared with < 6 h) on the previous night was associated with episodic memory scores 0.60 SD (0.16 to 1.03) higher (p = 0.008) and psychomotor speed 0.34 SD (0.04 to 0.65) faster (p = 0.03). Each 30-min increase in REM sleep on the previous night was associated with 0.13 SD (0.00 to 0.25) higher attention scores (p = 0.04); a 30-min increase in SWS was associated with 0.17 SD (0.05 to 0.29) higher episodic memory scores (p = 0.008). Conclusions Memory benefits of MVPA may persist for 24 h; longer sleep duration, particularly more time spent in SWS, could independently contribute to these benefits.
Background Previous studies suggest short-term cognitive benefits of physical activity occurring minutes to hours after exercise. Whether these benefits persist the following day and the role of sleep is unclear. We examined associations of accelerometer-assessed physical activity, sedentary behaviour, and sleep with next-day cognitive performance in older adults. Methods British adults aged 50-83 years (N = 76) without evidence of cognitive impairment or dementia wore accelerometers for eight days, and took daily cognitive tests of attention, memory, psychomotor speed, executive function, and processing speed. Physical behaviour (time spent in moderate-to-vigorous physical activity [MVPA], light physical activity [LPA], and sedentary behaviour [SB]) and sleep characteristics (overnight sleep duration, time spent in rapid eye movement [REM] sleep and slow wave sleep [SWS]) were extracted from accelerometers, with sleep stages derived using a novel polysomnography-validated machine learning algorithm. We used linear mixed models to examine associations of physical activity and sleep with next-day cognitive performance, after accounting for habitual physical activity and sleep patterns during the study period and other temporal and contextual factors. Results An additional 30 min of MVPA on the previous day was associated with episodic memory scores 0.15 standard deviations (SD; 95% confidence interval = 0.01 to 0.29; p = 0.03) higher and working memory scores 0.16 SD (0.03 to 0.28; p = 0.01) higher. Each 30-min increase in SB was associated with working memory scores 0.05 SD (0.00 to 0.09) lower (p = 0.03); adjustment for sleep characteristics on the previous night did not substantively change these results. Independent of MVPA on the previous day, sleep duration ≥ 6 h (compared with < 6 h) on the previous night was associated with episodic memory scores 0.60 SD (0.16 to 1.03) higher (p = 0.008) and psychomotor speed 0.34 SD (0.04 to 0.65) faster (p = 0.03). Each 30-min increase in REM sleep on the previous night was associated with 0.13 SD (0.00 to 0.25) higher attention scores (p = 0.04); a 30-min increase in SWS was associated with 0.17 SD (0.05 to 0.29) higher episodic memory scores (p = 0.008). Conclusions Memory benefits of MVPA may persist for 24 h; longer sleep duration, particularly more time spent in SWS, could independently contribute to these benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.