2021
DOI: 10.17398/2605-5686.36.1.25
|View full text |Cite
|
Sign up to set email alerts
|

Free (rational) derivation

Abstract: By representing elements in free fields (over a commutative field and a finite alphabet) using Cohn and Reutenauer’s linear representations, we provide an algorithmic construction for the (partial) non-commutative (or Hausdorff-) derivative and show how it can be applied to the non-commutative version of the Newton iteration to find roots of matrix-valued rational equations.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?