This work adopted a strategy to use new functional high-performance piezoelectric materials for sustainable energy production in wearable self-powered electrical devices. An innovative modification in electrospinning was used to produce highly aligned nanofibers. In the nanogenerator, the flexible membrane constituents were tunefully combined. The novel composite nanofibers were made of Poly (vinylidene fluoride) PVDF, loaded with ZnO@ZnS core–shell nanoparticles to achieve a non-brittle performance of the hetero nanoparticles and piezoelectric polymer. A nanofiber mat was inserted between two thermoplastic sheets with conductive electrodes for application in wearable electronic devices. Complete spectroscopic analyses were performed to characterize the nanofiber’s material composition. It is shown that the addition of 10 wt % ZnO@ZnS core–shell nanoparticles significantly improved the piezoelectric properties of the nanofibers and simultaneously kept them flexible due to the exceedingly resilient nature of the composite. The superior performance of the piezoelectric parameter of the nanofibrous mats was due to the crystallinity (polar β phase) and surface topography of the mat. The conversion sensitivity of the PVDF device recorded almost 0.091 V/N·mm3, while that of the PVDF—10 wt % ZnO@ZnS composite mat recorded a sensitivity of 0.153 V/N·mm3, which is higher than many flexible nano-generators. These nanogenerators provide a simple, efficient, and cost-effective solution to microelectronic wearable devices.