Axially functionally graded (AFG) beam is a special kind of nonhomogeneous functionally gradient material structure, whose material properties vary continuously along the axial direction of the beam by a given distribution form. There are several numerical methods that have been used to analyze the vibration characteristics of AFG beams, but it is difficult to obtain precise solutions for AFG beams because of the variable coefficients of the governing equation. In this topic, the free vibration of AFG beam using analytical method based on the perturbation theory and Meijer G-Function are studied, respectively. First, a detailed review of the existing literatures is summarized. Then, based on the governing equation of the AFG Euler-Bernoulli beam, the detailed analytic equations are derived on basis of the perturbation theory and Meijer G-function, where the nature frequencies are demonstrated. Subsequently, the numerical results are calculated and compared, meanwhile, the analytical results are also confirmed by finite element method and the published references. The results show that the proposed two analytical methods are simple and efficient and can be used to conveniently analyze free vibration of AFG beam.