Background: Mechanics is an area of science dealing with the behavior of physical bodies (solids and fluids) undergoing action of forces, it comprised of statics, kinetics, and kinematics. The advances and research in Applied Mechanics has wide application in almost fields of study including medicine and biology. In this paper, the relationship between mechanical engineering and medicine and biological sciences is investigated based on its application in these two sacred fields. Some emergent mechanical techniques applied in medical sciences and practices are presented. Methods: Emerging applications of mechanical engineering in medical and biological sciences are presented and investigated including: biomechanics, nanomechanics and computational fluid dynamics (CFD). Results: This review article presents some recent advances of mechanical engineering applications in medicine and biology. Specifically, this work focuses on three major subjects of interests: Biomechanics that is increasingly being recognized as an important application of mechanical fundamentals in biomedical and biological sciences and practices, biomechanics can play a crucial role in both injury prevention as well as performance enhancement of living systems. Novel techniques of nanomechanics including: Carbon nanotubes applications in therapy, DNA recognition, immunology, and antiviral resistance. Nanorobotics that combines between nanotechnology, mechanics and new biomaterials to design and develop nanorobots based bacteria and biochips; these nanoscale robots can be involved in biomedical applications, particularly for the treatment of cancer, cerebral aneurysm treatment, kidney stones removal surgery, treatment of pathology, elimination of defected parts in the DNA structure, and some other treatments to save human lives. Computational fluid dynamics (CFD) tools that contribute on the understanding of blood flows, human organs dynamics and surgical options simulation. Conclusion: Recent advances of mechanical applications in medicine and biology are carried out in this review, such as biomechanics, nanomechanics and computational fluid dynamics (CFD). As perspectives, mechanical scholars and engineers can involve these cited applications in their researches to solve many problems and issues that doctors and biologists cannot.