The three-dimensional dynamic equations of a ring with a noncircular cross-section on an elastic foundation are obtained using the Hamilton variation principle. In contrast to the previous rings on elastic foundation model, the developed model incorporates both the in-plane and out-of-plane bend and the out-of-plane torsion in displacement fields. The errors in the derivation of the initial stress and the work of the internal pressure in previous rings on elastic foundation models have been corrected. The mode expansion was used to obtain the analytical solution of the natural frequency. The initial motivation is to develop a theoretical model for car tire dynamics. Therefore, to validate the proposed model, the in-plane and out-of-plane vibrations of a truck tire have been analyzed using the proposed method. To further verify the accuracy of the model, the results of the theoretical formula are compared with the finite element analysis and modal test, and good agreement can be found.