In this paper, the particle swarm optimization method is used to reduce the weight of a multilayer rotating nonuniform thickness disc along with alleviation of the maximum tangential stress and the maximum tangential stress-jump at the interfaces. The proposed disc is made of functionally graded material and is subjected to both mechanical pressure and thermal loads. It is divided into several layers with each one having its unique volume fraction. These volume fractions are considered the design variables of the optimization problem along with two geometrical parameters related to the disc thickness. The equilibrium equation in polar coordinates are solved using the finite difference method. A punch of optimization results is calculated and discussed. It is concluded that the range of design variables’ variation widens by considering more layers. Finally, there is no potential disc configuration or geometry is found dominant to enhance the design parameters concurrently. Therefore, performing similar optimization analyses is compulsory to obtain an efficient and durable structure.