Polymers are currently considered as a possible alternative to silicon dioxide in the fabrication of interlevel dielectrics. To penetrate mainstream semiconductor device fabrication polymers have to meet a number of requirements regarding their long-term stability. One aspect is the mechanical stability of integrated polymer films under changing climatic conditions. In the present work, the impact of ambient moisture on the mechanical properties of thin polymer films (PI, BCB, and PFCB) was investigated. The sorption of water molecules in these materials typically causes an anisotropic volume expansion, resulting in increased mechanical film stress if the film is physically constrained by adjacent inorganic structures. Especially polyimides show both considerable moisture uptake and large changes in the mechanical film stress, while BCB and PFCB are virtually insensitive to ambient moisture. In the paper, experimental data (water uptake, in-plane swelling, out-of-plane swelling) are presented and discussed in detail.