Efficient cyan‐emitting solid carbon dots (CDs) were synthesized via a one‐pot hydrothermal method. The obtained solid CDs show a broad absorption from 270–460 nm with a maximum around 400 nm, and emit intense cyan light around 500 nm with an internal photoluminescence quantum efficiency of 34.1 % under 400 nm excitation. The emission maximum of the solid CDs remains unchanged under 320–400 nm excitations. Compared with dilute aqueous of CDs (2.5 mg mL−1), the emission of solid CDs shows an obvious red‐shift of 50 nm. The red‐shift is caused by resonant energy transfer due to larger spectral overlap and smaller interparticle distance, together with a new surface state caused by aggregation in solid CDs. A lamp with white LEDs was fabricated by dropping a mixture of solid CDs, CaAlSiN3:Eu2+ and silicon resin on the top of a near‐ultraviolet LED chip. Under an operating current of 20 mA, the as‐fabricated white LED generates a high‐quality, warm white light with a color rendering index of 86.1, a color temperature of 4340 K, and a luminescence efficiency of 31.3 lm W−1.