Adult rabbit articular cartilage was prepared for scanning electron microscopy using, in order, glutaraldehyde fixation, enzymatic removal of proteoglycan, dehydration in ethanol, cryofracture in liquid nitrogen, and critical-point drying. Enzymes were effective in fixed material. Fixation, cryofracture, alignment of fracture surfaces with "split lines," and retention of subchondral bone were found to be necessary steps for the preservation of collagen detail. The fibrous framework was found to be similar to that proposed by Benninghoff and favored by more recent phase-contrast microscopic studies. Vertical fibers extending from subchondral bone and a network of tangentially oriented superficial fibrils converge in the transitional zone. No random layer is seen. Pericellular capsules interdigitate with the vertical fibers. When cartilage is prepared in a manner that minimizes tissue damage, scanning electron microscopy provides useful, unique information.