Astronomical" or "circumstellar" silicate optical functions (real and imaginary indices of refraction n(λ) and k(λ)) have been previously derived from compositionally and structurally disparate samples; past values were compiled from different sources in the literature, and are essentially kluges of observational, laboratory, and extrapolated or interpolated values. These synthetic optical functions were created because astronomers lack the quantitative data on amorphous silicates at all wavelengths needed for radiative transfer modeling. This paper provides optical functions that (1) are created with a consistent methodology, (2) use the same sample across all wavelengths, and (3) minimize interpolation and extrapolation wherever possible. We present electronic data tables of optical functions derived from mid-ultraviolet to far-infrared laboratory transmission spectra for two materials: iron-free glass with chondritic/solar atmospheric abundances, and metallic iron. We compare these optical functions to other popular n, k data used to model amorphous silicates (e.g., "astronomical" or "circumstellar" silicate), both directly and in application to a simple system: the dust shell of the post-AGB star HD 161796. Using the new optical functions, we find that the far-IR profile of model SEDs are significantly affected by the ratio of glass to iron. Our case study on HD161796 shows that modeling with our new optical functions, the mineralogy is markedly different from that derived using synthetic optical functions and suggests a new scenario of crystalline silicate formation.