Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, c.1826A > G (H609R) and c.3067_3072delATAGTG (I1023_V1024del), are associated with severe lung disease. Despite the existence of four CFTR targeted therapies, none have been approved for individuals with these mutations because the associated molecular defects were not known. In this study we examined the consequences of these mutations on protein processing and channel function in HEK293 cells. We found that, similar to F508del, H609R and I1023_V1024del-CFTR exhibited reduced protein processing and altered channel function. Because the I1023_V1024del mutation can be linked with the mutation, I148T, we also examined the protein conferred by transfection of a plasmid bearing both mutations. Interestingly, together with I148T, there was no further reduction in channel function exhibited by I1023-V1024del. Both H609R and I1023_V1024del failed to exhibit significant correction of their functional expression with lumacaftor and ivacaftor. In contrast, the triple modulator combination found in TRIKAFTATM, i.e., tezacaftor, elexacaftor and ivacaftor rescued trafficking and function of both of these mutants. These in-vitro findings suggest that patients harbouring H609R or I1023_V1024del, alone or with I148T, may benefit clinically from treatment with TRIKAFTATM.
The rare Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, c.1826A > G (H609R) and c.3067_3072delATAGTG (I1023_V1024del), are associated with severe lung disease. Despite the existence of four CFTR targeted therapies, none have been approved for individuals with these mutations because the associated molecular defects were not known. In this study we examined the consequences of these mutations on protein processing and channel function in HEK293 cells. We found that, similar to F508del, H609R and I1023_V1024del-CFTR exhibited reduced protein processing and altered channel function. Because the I1023_V1024del mutation can be linked with the mutation, I148T, we also examined the protein conferred by transfection of a plasmid bearing both mutations. Interestingly, together with I148T, there was no further reduction in channel function exhibited by I1023-V1024del. Both H609R and I1023_V1024del failed to exhibit significant correction of their functional expression with lumacaftor and ivacaftor. In contrast, the triple modulator combination found in TRIKAFTATM, i.e., tezacaftor, elexacaftor and ivacaftor rescued trafficking and function of both of these mutants. These in-vitro findings suggest that patients harbouring H609R or I1023_V1024del, alone or with I148T, may benefit clinically from treatment with TRIKAFTATM.
Cystic fibrosis (CF) is a rare autosomal recessive disease most commonly affecting the Caucasian population. CF diagnosis can be a challenge due to the large spectrum of pathogenic variants in the CFTR gene and the effects of complex alleles. Next-generation sequencing has improved our understanding of the contribution of these complex alleles to the wide spectrum of CF clinical symptoms and to the response to medications. Herein, we studied nine CF patients from six unrelated families carrying the complex allele p.[Ile148Thr;Ile1023_Val1024del] with a frequency of 0.18%. All patients were from Central Mexico. This complex allele was found in trans with Class I and II pathogenic variants such as p.(Phe508del), and p.(Phe1078Profs*77)]. A targeted search of a dataset of 2217 exomes from healthy individuals revealed that eight individuals (0.18%) carried the p.(Ile148Thr) variant, but only one (0.022%), who was also born in Central Mexico, was a carrier of the complex allele. These findings show an enrichment of this p.[Ile148Thr;Ile1023_Val1024del] complex allele in Mexican CF patients in this region of Mexico. Finally, protein modeling revealed that this complex allele disrupts the secondary structure of the CFTR protein and might alter the ion flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.