Innovating passive and chipless coded landmarks have recently emerged for high accuracy self-localization systems. Existing landmarks make use of the combination of retro-directive devices, corner reflectors and lenses, with a coding particle in order to give a high RCS response over a wide angle. In this paper, with a consideration of important practical parameters unappreciated in existing designs, we propose a wide-angle retro-directive frequency-coded lens by a curved one-dimensional Photonic Crystal (PhC) resonator. The proposed frequency-coded lens is made of two parts: a homogenous lens and a curved PhC resonator where the resonator is located along the lens focal line. A frequency coding is used, where the presence or absence of a notch frequency in a specified information channel encodes an information bit. A PhC resonator provides unique advantages over existing coding particles due to its continuity along the lens focal line which creates a stable ID appearance over wide-angle. In addition, the potential of coding in its volume, rather than on the surface, entitles to a high coding capacity. Two frequency-coded lenses with single and dual defect resonators are EM simulated, fabricated, and experimentally validated in the W-band (75 GHz-110 GHz). Simulated results show that a wide detection angle of 170 • can be achieved where the tag ID is maintained over all angles. A wide retro-directivity of 80 • and 60 • is experimentally demonstrated for frequency-coded lenses by a single defect (single notch) and a dual defect (double notch) PhC resonator, respectively.INDEX TERMS one-dimensional photonic crystal resonator, homogenous lens, Radar Cross Section (RCS), RFID, and coded reflectors.