We report a setup for high-resolution two-photon spectroscopy using a mid-infrared continuous wave optical parametric oscillator (CW-OPO) and a near-infrared diode laser as the excitation sources, both of which are locked to fully stabilized optical frequency combs. The diode laser is directly locked to a commercial near-infrared optical frequency comb using an optical phaselocked loop. The near-infrared frequency comb is also used to synchronously pump a degenerate femtosecond optical parametric oscillator to produce a fully stabilized mid-infrared frequency comb. The beat frequency between the mid-infrared comb and the CW-OPO is then stabilized through frequency locking. We used the setup to measure a double resonant twophoton transition to a symmetric vibrational state of acetylene with a sub-Doppler resolution and high signal-to-noise ratio.© 2017 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. Bartalini, and P. De Natale, "Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference," Opt. Lett. 37(23), 4811-4813 (2012). 9.