Integration of distributed energy sources, advanced meshed operation, sensors, automation, and communication networks all contribute to autonomous operations and decision-making processes utilized in the grid. Therefore, smart grid systems require sophisticated supporting structures. Furthermore, rapid detection and identification of disturbances and transients are a necessary first step towards situationally aware smart grid systems. This way, high-level monitoring is achieved and the entire system kept operational. Even though smart grid systems are unavoidably sophisticated, low-complexity algorithms need to be developed for real-time sensing on the edge and online applications to alert stakeholders in the event of an anomaly. In this study, the simplest form of anomaly detection mechanism in the absence of any a priori knowledge, namely, the energy detector (also known as radiometer in the field of wireless communications and signal processing), is investigated as a triggering mechanism, which may include automated alerts and notifications for grid anomalies. In contrast to the mainstream literature, it does not rely on transform domain tools; therefore, utmost design and implementation simplicity are attained. Performance results of the proposed energy detector algorithm are validated by real power system data obtained from the DOE/EPRI National Database of power system events and the Grid Signature Library.