Temperature fluctuations of an optical resonator underlie a fundamental limit of its cavity stability. Here we show that the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature. An optical wave launched into the cavity is able to produce strong photothermal backaction which dramatically suppresses the spectral intensity of temperature fluctuations and squeezes its overall level by orders of magnitude. The proposed photothermal temperature squeezing is expected to significantly improve the stability of optical resonances, with potentially profound impact on broad applications of high-Q cavities in sensing, metrology, and nonlinear/quantum optics.