The electric power system is currently undergoing a period of unprecedented changes. Environmental and sustainability concerns lead to replacement of a significant share of conventional fossil fuel-based power plants with renewable energy resources. This transition involves the major challenge of substituting synchronous machines and their well-known dynamics and controllers with power electronics-interfaced generation whose regulation and interaction with the rest of the system is yet to be fully understood. In this article, we review the challenges of such low-inertia power systems, and survey the solutions that have been put forward thus far. We strive to concisely summarize the laidout scientific foundations as well as the practical experiences of industrial and academic demonstration projects. We touch upon the topics of power system stability, modeling, and control, and we particularly focus on the role of frequency, inertia, as well as control of power converters and from the demand-side.