Since the discovery of Green Fluorescent Protein (GFP), there has been a revolutionary change in the use of live-cell imaging as a tool for understanding fundamental biological mechanisms. Striking progress has been particularly evident in Drosophila, whose extensive toolkit of mutants and transgenic lines provides a convenient model to study evolutionarily-conserved developmental and cell biological mechanisms. We are interested in understanding the mechanisms that control cell fate specification in the adult peripheral nervous system (PNS) in Drosophila. Bristles that cover the head, thorax, abdomen, legs and wings of the adult fly are individual mechanosensory organs, and have been studied as a model system for understanding mechanisms of Notch-dependent cell fate decisions. Sensory organ precursor (SOP) cells of the microchaetes (or small bristles), are distributed throughout the epithelium of the pupal thorax, and are specified during the first 12 hours after the onset of pupariation. After specification, the SOP cells begin to divide, segregating the cell fate determinant Numb to one daughter cell during mitosis. Numb functions as a cell-autonomous inhibitor of the Notch signaling pathway.Here, we show a method to follow protein dynamics in SOP cell and its progeny within the intact pupal thorax using a combination of tissuespecific Gal4 drivers and GFP-tagged fusion proteins 1,2 .This technique has the advantage over fixed tissue or cultured explants because it allows us to follow the entire development of an organ from specification of the neural precursor to growth and terminal differentiation of the organ. We can therefore directly correlate changes in cell behavior to changes in terminal differentiation. Moreover, we can combine the live imaging technique with mosaic analysis with a repressible cell marker (MARCM) system to assess the dynamics of tagged proteins in mitotic SOPs under mutant or wildtype conditions. Using this technique, we and others have revealed novel insights into regulation of asymmetric cell division and the control of Notch signaling activation in SOP cells (examples include references 1-6,7 ,8 ).
Video LinkThe video component of this article can be found at https://www.jove.com/video/2706/ Protocol Required Materials: Dissection stereo-microscope, Double-sided tape, standard microscope slide and coverslip, dissection forceps (size 5 or 5.5), soft-bristled brush, silicone vacuum grease, 5cc syringe, Whatman paper, confocal or epifluorescence microscope with digital camera and image acquisition software.
Pupal Dissection1. Set up a cross (using the appropriate combination of Gal4 line and a GFP tagged fusion protein under UAS control) or place flies from a stock you wish to image in several fresh vials at 25°C. 2. SOP cells generally begin to proliferate on the pupal thorax at eighteen hours after the onset of pupariation, we therefore select "white" pupae from the appropriate fly stock or cross. White pupae have the pupal morphology, but have an unpigmented pupal case,...