Dynamical jets are generally found on Light bridges (LBs), which are key to studying sunspots decays. So far, their formation mechanism is not fully understood. In this paper, we used state-of-the-art observations from the Goode Solar Telescope, the Interface Region Imaging Spectrograph, the Spectro-Polarimeter on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory to analyze the fan shape jets on LBs in detail. Continuous upward motion of the jets in ascending phase is found from the Hα velocity, which lasts for 12 minutes and is associated with the Hα line wing enhancements.Two mini jets appear upon the bright fronts of the fan shape jets visible in the AIA 171Å and 193Å channels, with a time interval as short as 1 minute. Two kinds of small scale convective motions are identified in the photospheric images, along with the Hα line wing enhancements. One seems to be associated with the formation of a new convection cell and the other manifests as the motion of a dark lane passing through the convection cell. The finding of three lobes Stokes V profiles and their inversion with NICOLE code indicates that there is magnetic field lines with opposite polarities in LBs. From the Hα -0.8Å images, we found ribbon like brightenings propagating along the LBs, possibly indicating slipping reconnection. Our observation supports that the fan shape jets under study are caused by the magnetic reconnection and photospheric convective motions play an important role in triggering the magnetic reconnection.