The number of embryos transferred during an IVF cycle is directly related to the high incidence of multiple births, which is the culprit of perinatal morbidity. Therefore, single fresh embryo transfer (ET) strategy, or freeze-all, followed by a single frozen-thawed embryo transfer (FET) cycle, may dramatically reduce the rate of multiple births, without compromising the cumulative live birth rates (LBRs). A literature review was conducted for all available evidences assessing obstetrics and perinatal outcomes associated with FET compared to fresh ET and natural conception. While studies comparing fresh and FET cycles in normal responders have yielded conflicting results for pregnancy rate, FET was associated with lower risk of prematurity and low birth weight and increased risk of large for gestational age (LGA) and/or macrosomic in singletons, when compared with fresh ET. Macrosomic/LGA births have a higher risk of fetal hypoxia, stillbirth, shoulder dystocia, perineal lacerations, cesarean section, postpartum hemorrhage and neonatal metabolic disturbances at birth. Nonetheless, it seems that other than higher risk of fetal macrosomia, there are additional obstetric complications associated with FET. The relative risk of hypertensive disorders in pregnancy, as well as perinatal mortality were also demonstrated to be increased in FET compared with singletons from fresh ET and natural conception. Therefore, when considering elective freeze-all policy, in addition to LBR and the risk of ovarian hyperstimulation syndrome, physicians should consider the aforementioned increased FET cycles' pregnancy complications, including LGA/ macrosomia, hypertensive disorders of pregnancy, as well as perinatal mortality.
BACKGROUNDThe number of embryos transferred during an IVF cycle is directly related to the high incidence of multiple births, which are the culprit of perinatal morbidity. Therefore, the single fresh embryo transfer (ET) strategy, or freeze-all, followed by a single frozen-thawed embryo transfer (FET) cycle, may dramatically reduce the rate of multiple births, without compromising the cumulative live birth rates (LBRs) (1). This trend toward single ET results in the cryopreservation of the surplus embryos for future replacement.