Shallow water sponges settled on a raft along the Pong River (Lower Mekong Basin, Thailand) were investigated to highlight the taxonomic richness, composition, relative abundance and lifestyle of sponge-dwelling aquatic Insecta. The three-dimensional biogenic structures of the model sponges hosted 4 orders of Insecta, belonging to 10 families and 19 genera/species, able to strictly coexist at the level of the sponges in aquiferous canals and/or at the body surface, and/or dwelling in the extracellular matrix. On the basis of the identified 379 larvae and pupae, Trichoptera and Diptera were found to be the dominant inhabitants of Corvospongilla siamensis (Demospongiae: Spongillida), endemic to Southeast Asia. In the focused lotic ecosystem, dominated by soft bottoms, sponges play a functional role. Insecta use sponges as a substratum, nursery ground, food source, and shelter microhabitat, protecting them from predation and environmental aggression. Moreover, their feeding behavior indicates the insects’ adaptive traits to recycle sponge siliceous spicules as a source of exogenous material to strengthen the larval–pupal cases and the digestive system. The results of the Thai sponge model contribute to the inventory of global engineering species richness, ecosystem types, and biogeographic diversity, thus raising awareness for freshwater biodiversity conservation. In this regard, the present data, along with the worldwide inventory, focus on sponges as (a) key habitat-forming species for aquatic insect assemblages, (b) ecosystem engineers in river/lake/wetland ecosystems, providing water purification, the processing of organic matter, recycling of nutrients, and freshwater–terrestrial coupling, and (c) promising candidates in restoration projects of tropical freshwater ecosystems by bioremediation.