Colloidal quantum
dots (QDs) are nanoparticles that are able to
photoreduce redox proteins by electron transfer (ET). QDs are also
able to transfer energy by resonance energy transfer (RET). Here,
we address the question of the competition between these two routes
of QDs’ excitation quenching, using cadmium telluride QDs and
cytochrome c (CytC) or its metal-substituted derivatives. We used
both oxidized and reduced versions of native CytC, as well as fluorescent,
nonreducible Zn(II)CytC, Sn(II)CytC, and metal-free porphyrin CytC.
We found that all of the CytC versions quench QD fluorescence, although
the interaction may be described differently in terms of static and
dynamic quenching. QDs may be quenchers of fluorescent CytC derivatives,
with significant differences in effectiveness depending on QD size.
SnCytC and porphyrin CytC increased the rate of Fe(III)CytC photoreduction,
and Fe(II)CytC slightly decreased the rate and ZnCytC presence significantly
decreased the rate and final level of reduced FeCytC. These might
be partially explained by the tendency to form a stable complex between
protein and QDs, which promoted RET and collisional quenching. Our
findings show that there is a net preference for photoinduced ET over
other ways of energy transfer, at least partially, due to a lack of
donors, regenerating a hole at QDs and leading to irreversibility
of ET events. There may also be a common part of pathways leading
to photoinduced ET and RET. The nature of synergistic action observed
in some cases allows the hypothesis that RET may be an additional
way to power up the ET.