2012
DOI: 10.4171/cmh/264
|View full text |Cite
|
Sign up to set email alerts
|

Friable values of binary forms

Abstract: Let F 2 ZOEX; Y be an integral binary form of degree g > 2, and let ‰ F .x; y/ WD cardf1 6 a; b 6 x W P C .F .a; b// 6 yg where as usual P C .n/ denotes the largest prime factor of n. It is proved that ‰ F .x; y/ x 2 for y D x g 2C" in general, and y D x 1= p eC" if g D 3. Better results are obtained if F is reducible.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

1
13
0
21

Year Published

2014
2014
2020
2020

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(35 citation statements)
references
References 15 publications
1
13
0
21
Order By: Relevance
“…, X d ] no two of which are affinely related and K is a convex body. This improves upon Balog, Blomer, Dartyge and Tenenbaum's work [1] in the case of product of linear forms.…”
supporting
confidence: 58%
“…, X d ] no two of which are affinely related and K is a convex body. This improves upon Balog, Blomer, Dartyge and Tenenbaum's work [1] in the case of product of linear forms.…”
supporting
confidence: 58%
“…Le présent article a pour origine le récent travail de A. Balog, V. Blomer, C. Dartyge et G. Tenenbaum [1] qui ont soulevé la question de la friabilité des valeurs d'un polynôme homogène de Z[X 1 , X 2 ]. Rappelons d'abord quelques notations classiques.…”
Section: Introductionunclassified
“…Pour n ∈ Z non nul, on pose P + (n) = 1 s i n = ±1, max{p ; p | n} si n = ±1. Nous nous intéressonsà un problème plus général que celui traité dans [1], a savoir la friabilité des valeurs d'un polynôme F en plusieurs variables,à coefficients entiers, le moins particulier possible. Pour ce faire, nous introduisons, pour x et y réels positifs, la quantité Ψ F (x, y) := m ∈ Z n ; m ≤ x, F (m) = 0 et P + (F (m)) ≤ y .…”
Section: Introductionunclassified
See 2 more Smart Citations