In order to save the time and cost of friction and wear experiments, the coating composition (different contents of Al, Ti, and Cu elements), ratio of hardness and elastic modulus (H3/E2), vacuum heat treatment (VHT) temperature, and wear form were used as input variables, and the wear rates of high-entropy alloy (HEA) coatings were used as output variables. The dataset was entirely obtained by experiment. Four machine learning algorithms (classification and regression tree (CART), random forest (RF), gradient boosting decision tree (GBDT), and adaptive boosting (AdaBoost)) were used to predict the wear resistance of HEA coatings based on a small amount of data. The results show that except for the GBDT model, the other three models had good performance. Because of the small amount of data, the CART model demonstrated the best prediction performance and can provide guidance for predicting the wear resistance of AlCoCrFeNi-X (Ti, Cu) HEA coatings for drilling equipment. Furthermore, the contribution of different factors to the wear rate of AlCoCrFeNi-X (Ti, Cu) HEA coatings was obtained. Al content had the greatest influence on wear rate, followed by H3/E2, wear form, and VHT temperature.