The complex nature of slip-rolling contacts in many applications such as gear tooth flanks, rolling bearings, and heavy machinery often makes determining the friction and wear properties, as well as the fatigue resistance, of tribosystems difficult. The establishment of the tribological profile of a tribocouple under high Hertzian contact pressure and under slip-rolling will allow for the measurement and comparison of friction and wear coefficients as well as slip-rolling resistance by continuously monitoring the wear rate, coefficient of friction, temperature, oil film thickness, and/or electrical contact resistance using high-resolution signal analysis (HRA). A twin disc system can provide insight into the adhesive behavior of material and lubricant products such as alternative base oils and additives, ceramics, alloys, and thin film coatings. The strength and endurance of these products are often characterized through fatigue and resistance tests, which apply high Hertzian contact pressures to the rolling contact until seizure or failure is obtained. The further observation of the formation of tribofilms on the surface of contact yields information about the reactivity and thermochemical properties of additives. This review aims to illustrate how the implementation of different screening methodologies can be used as a meaningful tool for assessing the aforementioned tribological profile properties for the development of slip-rolling tribosystems.