In a high-precision servo system, the nonlinear friction link is the key factor affecting the system performance. Reasonable solving of the friction link in servo systems has become a focus of current research. This paper summarizes the friction nonlinearity that affects the control performance of servo systems. First, the characteristics of friction are summarized, and the advantages and disadvantages of typical friction models in recent years are analyzed. Subsequently, existing friction model parameter identification methods are introduced and evaluated. On this basis, the development level of the friction nonlinear control strategy is analyzed from three aspects: friction model-based control, friction model-free control, and compound control. Finally, the objective advantages and disadvantages of the existing technology are summarized, and the future development direction of the friction model and selection reference for the nonlinear friction control strategy are comprehensively discussed.