Friction stir welding (FSW) has been recognized as a revolutionary welding process for marine applications, effectively tackling the distinctive problems posed by maritime settings. This review paper offers a comprehensive examination of the current advancements in FSW design, specifically within the marine industry. This paper provides an overview of the essential principles of FSW and its design, emphasizing its comparative advantages when compared with conventional welding techniques. The literature review reveals successful implementations in the field of shipbuilding and offshore constructions, highlighting design factors as notable enhancements in joint strength, resistance to corrosion, and fatigue performance. This study examines the progress made in the field of FSW equipment and procedures, with a specific focus on their application in naval construction. Additionally, it investigates the factors to be considered when selecting materials and ensuring their compatibility in this context. The analysis of microstructural and mechanical features of FSW joints is conducted, with a particular focus on examining the impact of welding settings. The study additionally explores techniques for mitigating corrosion and safeguarding surfaces in marine environments. The study also provides a forward-looking perspective by proposing potential areas of future research and highlighting the issues that may arise in the field of FSW for maritime engineering. The significance of incorporating environmental and economic considerations in the implementation of FSW for extensive marine projects is emphasized.