We propose an effective method to control the local hardness and morphology of a metal surface by tilting the incident angle of a horn during ultrasonic nanocrystal surface modification (UNSM). In this study, surface treatment using UNSM was performed on an S45C specimen and a parameter study was conducted for optimization. The process parameters were the feeding rate, static load, striking force, and processing angle (Ф). In particular, the Ф was analyzed by tilting the horn by 0°, 10°, 20°, 30°, 40°, and 45° to understand its effect on surface hardness and changes in the morphology. From fundamental experiments, some important phenomena were observed, such as grain-microstructure changes along the processing and thickness directions. Furthermore, to verify the practical usefulness of this study, a flat and a hemispherical specimen of S45C material were treated using UNSM with various values of Ф. A significant change in hardness (an increase from 2–45%) and a gradual hardness gradient on the tested specimens could be easily realized by the proposed method. Therefore, we believe that the method is effective for controlling the mechanical hardness of a metal surface.