Interface shear behavior between geosynthetics and clayey soil was investigated by large scale direct shear tests. The interfaces investigated are geomembrane (GM) and clayey soil; GM and geotextile (GT); and GT encased geosynthetics clay liner (GCL) and clayey soil. For GM/clayey soil interfaces, a softer GM resulted in a higher apparent adhesion, and higher water content of the soil yielded lower interface strength. A GM/bentonite interface had a small friction angle of 3-4°only. For all cases tested, the interface shear strength (s f) was lower than the shear strength of the corresponding soil (s fs), and the lowest s f /s fs ratio was about 0.55. For GM/GT interfaces, the stiffer a GM, the lower the interface shear strength. Also a GT with a woven slit film layer, which is smoother than a randomly aligned nonwoven fiber surface, had a lower interface shear strength. The moisture content of a cover silty soil layer also had a considerable effect on the interface shear strength. Higher water content of the cover soil promoted soil particles entering the openings of the GT and increased the strength. For GCL/clayey soil interfaces, increase the water content of the bentonite in the GCL, reduced the interface friction angle, but increased apparent adhesion. The ratios of s f /s fs was about 0.8-1.0, and it reduced with the increase of the water content of the bentonite and overburden pressure possibly due to migration of water from the GCL to the interface.