Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A survey on trust management in the Social Internet of Things (SIoT) is provided, beginning with a discussion of SIoT architectures and relationships. Using a variety of publication databases, we describe efforts that focus on various trust management aspects of SIoT . Trust management models comprise three themes: trust computation, aggregation, and updates. Our study presents a detailed discussion of all three steps. Trust computation and trust aggregation depend upon Trust Attributes (TAs) for the calculation of local and global trust values. Our paper discusses many strategies for aggregating trust, but "Weighted Sum" is the most frequently used in the relevant studies. Our paper addresses trust computation and aggregation scenarios. Our work classifies research by TAs (Social Trust, Quality of Service). We've categorized the research (reputation-based, recommendation-based, knowledge-based) depending on the types of feedback/opinions used to calculate trust values (global feedback/opinion, feedback from a friend, trustor's own opinion considering the trustee's information). Our work classifies studies (policy-based, prediction-based, weighted sum-based/weighted linear combination-based) by trust computation/aggregation approach. Two trust-update schemes are discussed: time-driven and event-driven schemes, while most trust management models utilize an event-driven scheme. Both trust computation and aggregation need propagating trust values in a centralized, decentralized, or semi-centralized way. Our study covers classifying research by trust updates and propagation techniques. Trust models should provide resiliency to SIoT attacks. This analysis classifies SIoT attacks as collaborative or individual. We also discuss scenarios depicted in the relevant studies to incorporate resistance against trust-related attacks in SIoT. Studies suggest context-based or context-free trust management strategies. Our study categorizes studies based on context-based or contextfree approaches. To gain the benefits of an immutable, privacy-preserving approach, a future trust management system should utilize Blockchain technology to support non-repudiation and tracking of trust relationships.
A survey on trust management in the Social Internet of Things (SIoT) is provided, beginning with a discussion of SIoT architectures and relationships. Using a variety of publication databases, we describe efforts that focus on various trust management aspects of SIoT . Trust management models comprise three themes: trust computation, aggregation, and updates. Our study presents a detailed discussion of all three steps. Trust computation and trust aggregation depend upon Trust Attributes (TAs) for the calculation of local and global trust values. Our paper discusses many strategies for aggregating trust, but "Weighted Sum" is the most frequently used in the relevant studies. Our paper addresses trust computation and aggregation scenarios. Our work classifies research by TAs (Social Trust, Quality of Service). We've categorized the research (reputation-based, recommendation-based, knowledge-based) depending on the types of feedback/opinions used to calculate trust values (global feedback/opinion, feedback from a friend, trustor's own opinion considering the trustee's information). Our work classifies studies (policy-based, prediction-based, weighted sum-based/weighted linear combination-based) by trust computation/aggregation approach. Two trust-update schemes are discussed: time-driven and event-driven schemes, while most trust management models utilize an event-driven scheme. Both trust computation and aggregation need propagating trust values in a centralized, decentralized, or semi-centralized way. Our study covers classifying research by trust updates and propagation techniques. Trust models should provide resiliency to SIoT attacks. This analysis classifies SIoT attacks as collaborative or individual. We also discuss scenarios depicted in the relevant studies to incorporate resistance against trust-related attacks in SIoT. Studies suggest context-based or context-free trust management strategies. Our study categorizes studies based on context-based or contextfree approaches. To gain the benefits of an immutable, privacy-preserving approach, a future trust management system should utilize Blockchain technology to support non-repudiation and tracking of trust relationships.
No abstract
Due to the significance of trust in Social Internet of Things (SIoT)-based smart marketplaces, several research have focused on trust-related challenges. Trust is necessary for a smooth connection, secure systems, and dependable services during trade operations. Recent SIoT-based trust assessment approaches attempt to solve smart marketplace trust evaluation difficulties by using a variety of direct and indirect trust evaluation techniques and other local trust rating procedures. Nevertheless, these methodologies render trust assessment very sensitive to seller dishonesty, and a dishonest seller may influence local trust scores and at the same time pose a significant trust related threats in the system. In this article, a MarketTrust model is introduced, which is a blockchain-based method for assessing trust in an IoT-based smart marketplace. It has three parts: familiarity, personal interactions, and public perception. A conceptual model, assessment technique, and a global trust evaluation system for merging the three components of a trust value are presented and discussed. Several experiments were conducted to assess the model's security, viability, and efficacy. According to results, the MarketTrust model scored a 21.99% higher trust score and a 47.698% lower average latency than both benchmark models. Therefore, this illustrates that using the proposed framework, a potential buyer can efficiently choose a competent and trustworthy resource seller in a smart marketplace and significantly reduce malicious behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.