“…Recent advances in fabrication/assembly techniques such as those that use controlled mechanical buckling (Khang et al, 2006; Sun et al, 2006; Audoly and Boudaoud, 2008a; Audoly and Boudaoud, 2008b; Audoly and Boudaoud, 2008c; Dias and Audoly, 2014; Xu et al, 2015; Zhang et al, 2015; Chen et al, 2016c; Chen et al, 2016d; Lestringant et al, 2017), self-folding induced by residual stress (Golod et al, 2001; Kong and Wang, 2003; Bell et al, 2007; Huang et al, 2012; Froeter et al, 2013; Huang et al, 2014; Chen et al, 2016e; Bauhofer et al, 2017; Tian et al, 2017), surface instabilities (Yin et al, 2008; Wang and Zhao, 2015; Lin et al, 2016; Wang and Zhao, 2016; Liao et al, 2017; Lin et al, 2017; Ma et al, 2017), capillary forces (Py et al, 2007; Guo et al, 2009; Antkowiak et al, 2011; Hure and Audoly, 2013; Brubaker and Lega, 2016) and temperature changes (Stroganov et al, 2014; Cui et al, 2017) and 3D printing/writing processes (Therriault et al, 2003; Gratson et al, 2004; Lewis et al, 2006; Schaedler et al, 2011; Soukoulis and Wegener, 2011; Fischer and Wegener, 2013; Jang et al, 2013; Farahani et al, 2014; Hong et al, 2015; Farahani et al, 2016; Matlack et al, 2016; Hirt et al, 2017), allow the construction of complex 3D structures and form the structural basis of 3D vibrations. Based on 3D polymers/silicon mesostructures assembled through the techniques of controlled compressive buckling (Xu et al, 2015; Zhang et al, 2015; Liu et al, 2016; Yan et al, 2016a; Yan et al, 2016b; Nan et al, 2017; Shi et al, 2017; Yan et al, 2017b; Zhang et al, 2017), Ning et al, (2017) realized structural vibrations with a broad set of 3D modes.…”