Inspection in confined spaces and difficult-to-access machines is a challenging quality assurance task and particularly difficult to quantify and automate. Using the example of aero engine inspection, an approach for the high-precision inspection of movable turbine blades in confined spaces will be demonstrated. To assess the condition and damages of turbine blades, a borescopic inspection approach in which the pose of the turbine blades is estimated on the basis of measured point clouds is presented. By means of a feature extraction approach, film-cooling holes are identified and used to pre-align the measured point clouds to a reference geometry. Based on the segmented features of the measurement and reference geometry a RANSAC-based feature matching is applied, and a multi-stage registration process is performed. Subsequently, an initial damage assessment of the turbine blades is derived, and engine disassembly decisions can be assisted by metric geometry deviations. During engine disassembly, the blade root is exposed to high disassembly forces, which can damage the blade root and is crucial for possible repair. To check for dismantling damage, a fast inspection of the blade root is executed using the borescopic sensor.