With the development of science and technology, wearable electronics are increasingly widely used in medical, environmental monitoring, and other fields. Thus, the demand for flexible electrodes is increasing. The two-dimensional material Ti3C2Tx has attracted much attention in the manufacture of flexible electrodes due to its excellent mechanical and electrical properties. However, the brittleness of pure Ti3C2Tx films has become a major obstacle for their use as flexible electrodes in wearable devices. Therefore, solving the brittleness problem of flexible electrodes based on Ti3C2Tx while maintaining the excellent performance of Ti3C2Tx has become an urgent problem. To solve this problem, Ti3C2Tx was compounded with waterborne polyurethane (WPU), and a Ti3C2Tx-WPU composite film with a hierarchical structure was constructed by evaporation-assisted self-assembly. The Ti3C2Tx-WPU composite film not only retains the excellent electrical conductivity of Ti3C2Tx (100 S m−1) but also has flexibility (20 MJ m−3). Furthermore, the Ti3C2Tx-WPU composite film is applied to functional devices such as contact pressure sensors and non-contact proximity sensors. Finally, the Ti3C2Tx-WPU composite film wearable device demonstrates its practical application potential in the field of wearable devices.