Expression of focal adhesion kinase (FAK) is elevated in malignant breast cancer, yet the role of intrinsic FAK activity in promoting tumor progression remains undefined. Here, we have inhibited FAK activity or expression in murine 4T1 breast carcinoma cells via dominantnegative focal adhesion kinase-related non-kinase (FRNK) or anti-FAK short hairpin RNA (shRNA) expression, respectively. Neither FRNK nor FAK shRNA (B80% reduced FAK levels) affected 4T1 proliferation in culture, whereas reduced FAK activity or expression blocked 4T1 cell invasion through Matrigel and resulted in 2-3-fold lower urokinase plasminogen activator (uPA) expression. Control 4T1 cells implanted into mammary fat pads of BALB/c mice exhibited spontaneous metastasis to the lungs, to the peritoneal cavity, and resulted in 90% lethality within 21 days. Whereas FAK shRNAexpressing 4T1 cells formed tumors in mice with low levels of apoptosis, when mammary-injected, these cells did not exhibit lung metastasis after 21 days and caused only 40% lethality up to 60 days. Transient re-expression of wildtype but not kinase-dead FAK in 4T1 FAK shRNA cells promoted uPA production and mammary to lung metastasis within 7 days. In fact, stable human uPA overexpression in 4T1 FAK shRNA cells promoted Matrigel invasion and lung metastasis equal to 4T1 controls. Conversely, treatment with plasminogen activator inhibitor-1 or neutralizing antibody to uPA blocked Matrigel invasion of 4T1 control cells. These studies provide the first direct proof that FAK catalytic activity can facilitate metastatic breast cancer progression by regulating uPA expression.