Abstract:In this paper, we study a preprojective algebra for quivers decorated with k-algebras and bimodules, which generalizes work of Gabriel for ordinary quivers, work of Ringel and Dlab for k-species, and recent work of de Thanhoffer de Völcsey and Presotto, which has recently appeared from a different perspective in work of Külshammer. As for undecorated quivers, we show that its moduli space of representations recovers the Hamiltonian reduction of the cotangent bundle over the space of representations of the deco… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.