Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Mycoplasma infections pose significant challenges in the poultry industry, necessitating effective therapeutic interventions. Tiamulin, a veterinary antibiotic, has demonstrated efficacy against Mycoplasma species. However, the emergence of resistant Mycoplasma species could dramatically reduce the therapeutic potential, contributing to economic losses. Optimizing the tiamulin’s pharmacokinetic profile via nanocarrier incorporation could enhance its therapeutic potential and reduce the administration frequency, ultimately reducing the resistant strain emergence. Niosomes, a type of self-assembled non-ionic surfactant-based nanocarrier, have emerged as a promising drug delivery system, offering improved drug stability, sustained release, and enhanced bioavailability. In this study, niosomal nanocarriers encapsulating tiamulin were prepared, characterized and assessed in Mycoplasma-inoculated broilers following oral administration. Differential scanning colorimetry (DSC) confirmed the alterations in the crystalline state following components integration into the self-assembled structures formed during the formulation procedure. Transmission electron microscopy (TEM) showed the spherical nanostructure of the formed niosomes. The formulated nanocarriers exhibited a zeta potential and average hydrodynamic diameter of −10.65 ± 1.37 mV and 339.67 ± 30.88 nm, respectively. Assessment of the pharmacokinetic parameters following oral administration to Mycoplasma gallisepticum-infected broilers revealed the ability of the niosomal nanocarriers to increase the tiamulin’s bioavailability and systemic exposure, marked by significantly higher area under the curve (AUC) (p < 0.01) and prolonged elimination half-life (T1/2) (p < 0.05). Enhanced bioavailability and prolonged residence time are crucial factors in maintaining therapeutic concentrations at reduced doses and administration frequencies. This approach provides a viable strategy to decrease the risk of subtherapeutic levels, thereby mitigating the development of antibiotic resistance. The findings presented herein offer a sustainable approach for the efficient use of antibiotics in veterinary medicine.
Mycoplasma infections pose significant challenges in the poultry industry, necessitating effective therapeutic interventions. Tiamulin, a veterinary antibiotic, has demonstrated efficacy against Mycoplasma species. However, the emergence of resistant Mycoplasma species could dramatically reduce the therapeutic potential, contributing to economic losses. Optimizing the tiamulin’s pharmacokinetic profile via nanocarrier incorporation could enhance its therapeutic potential and reduce the administration frequency, ultimately reducing the resistant strain emergence. Niosomes, a type of self-assembled non-ionic surfactant-based nanocarrier, have emerged as a promising drug delivery system, offering improved drug stability, sustained release, and enhanced bioavailability. In this study, niosomal nanocarriers encapsulating tiamulin were prepared, characterized and assessed in Mycoplasma-inoculated broilers following oral administration. Differential scanning colorimetry (DSC) confirmed the alterations in the crystalline state following components integration into the self-assembled structures formed during the formulation procedure. Transmission electron microscopy (TEM) showed the spherical nanostructure of the formed niosomes. The formulated nanocarriers exhibited a zeta potential and average hydrodynamic diameter of −10.65 ± 1.37 mV and 339.67 ± 30.88 nm, respectively. Assessment of the pharmacokinetic parameters following oral administration to Mycoplasma gallisepticum-infected broilers revealed the ability of the niosomal nanocarriers to increase the tiamulin’s bioavailability and systemic exposure, marked by significantly higher area under the curve (AUC) (p < 0.01) and prolonged elimination half-life (T1/2) (p < 0.05). Enhanced bioavailability and prolonged residence time are crucial factors in maintaining therapeutic concentrations at reduced doses and administration frequencies. This approach provides a viable strategy to decrease the risk of subtherapeutic levels, thereby mitigating the development of antibiotic resistance. The findings presented herein offer a sustainable approach for the efficient use of antibiotics in veterinary medicine.
Chemoresistance encountered using conventional chemotherapy demands novel treatment approaches. Asplatin (Asp), a novel platinum (IV) prodrug designed to release cisplatin and aspirin in a reductive environment, has demonstrated high cytotoxicity at reduced drug resistance. Herein, we investigated the ability of green-synthesized nanocarriers to enhance Asp’s efficacy. Zinc oxide nanoparticles (ZnO-NPs) were synthesized using a green microwave-assisted method with the reducing and capping agent gambogic acid (GA). These nanoparticles were then loaded with Asp, yielding Asp@ZnO-NPs. Transmission electron microscopy was utilized to study the morphological features of ZnO-NPs. Cell viability studies conducted on MDA-MB-231 breast cancer cells demonstrated the ability of the Asp@ZnO-NPs treatment to significantly decrease Asp’s half-maximal inhibitory concentration (IC50) (5 ± 1 µg/mL). This was further demonstrated using flow cytometric analysis that revealed the capacity of Asp@ZnO-NPs treatment to significantly increase late apoptotic fractions. Furthermore, in vivo studies carried out using solid Ehrlich carcinoma-bearing mice showed significant tumor volume reduction with the Asp@ZnO-NPs treatment (156.3 ± 7.6 mm3), compared to Asp alone (202.3 ± 8.4 mm3) and untreated controls (342.6 ± 10.3 mm3). The histopathological analysis further demonstrated the increased necrosis in Asp@ZnO-NPs-treated group. This study revealed that Asp@ZnO-NPs, synthesized using an eco-friendly approach, significantly enhanced Asp’s anticancer activity, offering a sustainable solution for potent anticancer formulations.
Carboplatin (Cp) is a potent chemotherapeutic agent, but its effectiveness is constrained by its associated side effects. Frankincense, an oleo-gum resin from the Boswellia sacra tree, has demonstrated cytotoxic activity against cancer cells. This study explored the synergistic potential of nanoparticles formulated from Boswellia sacra methanolic extract (BME), to enhance the therapeutic efficacy of Cp at reduced doses. Nanoparticles were prepared via the nanoprecipitation method, loaded with Cp, and coated with positively charged chitosan (CS) for enhanced cell interaction, yielding Cp@CS/BME NPs with an average size of 160.2 ± 4.6 nm and a zeta potential of 12.7 ± 1.5 mV. In vitro release studies revealed a pH-sensitive release profile, with higher release rates at pH 5.4 than at pH 7.4, highlighting the potential for targeted drug delivery in acidic tumor environments. In vitro studies on HT-29 and Caco-2 colorectal cancer cell lines demonstrated the nanoformulation’s ability to significantly increase Cp uptake and cytotoxic activity. Apoptosis assays further confirmed increased induction of cell death with Cp@CS/BME NPs. Cell-cycle analysis revealed that treatment with Cp@CS/BME NPs led to a significant increase in the sub-G1 phase, indicative of enhanced apoptosis, and a marked decrease in the G1-phase population coupled with an increased G2/M-phase arrest in both cell lines. Further gene expression analysis demonstrated a substantial downregulation of the anti-apoptotic gene Bcl-2 and an upregulation of the pro-apoptotic genes Bax, PUMA, and BID following treatment with Cp@CS/BME NPs. Thus, this study presents a promising and innovative strategy for enhancing the therapeutic efficacy of chemotherapeutic agents using naturally derived ingredients while limiting the side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.