Background/Objectives: This research investigates brain connectivity patterns in reaction to social and non-social stimuli within a virtual reality environment, emphasizing their impact on cognitive functions, specifically working memory. Methods: Employing the LEiDA framework with EEG data from 47 participants, I examined dynamic brain network states elicited by social avatars compared to non-social stick cues during a VR memory task. Through the integration of LEiDA with deep learning and graph theory analyses, unique connectivity patterns associated with cue type were discerned, underscoring the substantial influence of social cues on cognitive processes. LEiDA, conventionally utilized with fMRI, was creatively employed in EEG to detect swift alterations in brain network states, offering insights into cognitive processing dynamics. Results: The findings indicate distinct neural states for social and non-social cues; notably, social cues correlated with a unique brain state characterized by increased connectivity within self-referential and memory-processing networks, implying greater cognitive engagement. Moreover, deep learning attained approximately 99% accuracy in differentiating cue contexts, highlighting the efficacy of prominent eigenvectors from LEiDA in EEG analysis. Analysis of graph theory also uncovered structural network disparities, signifying enhanced integration in contexts involving social cues. Conclusions: This multi-method approach elucidates the dynamic influence of social cues on brain connectivity and cognition, establishing a basis for VR-based cognitive rehabilitation and immersive learning, wherein social signals may significantly enhance cognitive function.