In this work, different loads (3, 5 and wt%) of pine cone cellulose nanocrystals (CNCs) were added to films of poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) blends with a composition of 75 wt% PHB and 25 wt% PCL (PHB75/PCL25). The films were obtained after solvent casting followed by melt compounding in an extruder and finally subjected to a thermocompression process. The influence of different CNCs loadings on the mechanical, thermal, optical, wettability and disintegration in controlled compost properties of the PHB75/PCL25 blend was discussed. Field emission scanning electron microscopy (FESEM) revealed the best dispersion of CNCs on the polymeric matrix was at a load of 3 wt%. Over this loading, CNCs aggregates were formed enhancing the films fragilization due to stress concentration phenomena. However, the addition of CNCs improved the optical properties of the PHB75/PCL25 films by increasing their transparency and accelerated the film disintegration in controlled soil conditions. In general, the blend with 3 wt% CNCs offers the best balanced properties in terms of mechanical, thermal, optical and wettability.