2004
DOI: 10.1109/tpami.2004.1262197
|View full text |Cite
|
Sign up to set email alerts
|

From fns to heiv: a link between two vision parameter estimation methods

Abstract: Abstract-Problems requiring accurate determination of parameters from image-based quantities arise often in computer vision. Two recent, independently developed frameworks for estimating such parameters are the FNS and HEIV schemes. Here, it is shown that FNS and a core version of HEIV are essentially equivalent, solving a common underlying equation via different means. The analysis is driven by the search for a nondegenerate form of a certain generalized eigenvalue problem, and effectively leads to a new deri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
19
0

Year Published

2005
2005
2015
2015

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 33 publications
(19 citation statements)
references
References 14 publications
0
19
0
Order By: Relevance
“…The approximation leading from the EML cost function to the AML cost function involves, among other things, the elimination of the nuisance parameters (cf. [8,10,11,26,31,35]). …”
Section: Approximate Maximum Likelihood Cost Function and Scale Invarmentioning
confidence: 99%
See 2 more Smart Citations
“…The approximation leading from the EML cost function to the AML cost function involves, among other things, the elimination of the nuisance parameters (cf. [8,10,11,26,31,35]). …”
Section: Approximate Maximum Likelihood Cost Function and Scale Invarmentioning
confidence: 99%
“…,w I ] for any iterative method operating on η is obtained by modifying the specific solution given above. The modification reflects the fact that X admits only an approximate representation as in (10). The steps of the initialisation procedure are detailed in Algorithm 1.…”
Section: Initialisation Proceduresmentioning
confidence: 99%
See 1 more Smart Citation
“…A further approach is the heteroscedastic errors-in-variables (HEIV) model which was introduced by Leedan [11] and refined by Matei and Meer [7]. A recent paper [12] illustrated the link between FNS and HEIV. Consequently, HEIV shows similar properties and problems (for instance, Nestares et al report convergence problems in [13]).…”
Section: 4mentioning
confidence: 99%
“…Extending this view, Chojnacki et al [4] asserted that renormalization is an approximate method for ML and proposed a new method called FNS (fundamental numerical scheme) for directly computing ML [5]. They also pointed out that in this respect the HEIV (heteroscedastic errors-in-variables) of Leedan and Meer [18] falls in the same category [6], too. From these observations, Chojnacki et al [4] asserted superiority of the FNS and the HEIV over renormalization.…”
Section: Controversies About Renormalizationmentioning
confidence: 99%