2021
DOI: 10.48550/arxiv.2107.09238
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

From Generalized Gauss Bounds to Distributionally Robust Fault Detection with Unimodality Information

Abstract: Probabilistic methods have attracted much interest in fault detection design, but its need for complete distributional knowledge is seldomly fulfilled. This has spurred endeavors in distributionally robust fault detection (DRFD) design, which secures robustness against inexact distributions by using moment-based ambiguity sets as a prime modelling tool. However, with the worst-case distribution being implausibly discrete, the resulting design suffers from over-pessimisim and can mask the true fault. This paper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 55 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?