Durum wheat (Triticum turgidum ssp. durum L.) is an important world food crop used to make pasta products. Compared to bread wheat (Triticum aestivum L.), fewer studies have been conducted to identify genetic loci governing yield‐component traits in durum wheat. A potential source of diversity for durum is its immediate progenitor, cultivated emmer (T. turgidum ssp. dicoccum). We evaluated two biparental populations of recombinant inbred lines (RILs) derived from crosses between the durum lines Ben and Rusty and the cultivated emmer wheat accessions PI 41025 and PI 193883, referred to as the Ben × PI 41025 (BP025) and Rusty × PI 193883 (RP883) RIL populations, respectively. Both populations were evaluated under field conditions in three seasons with an aim to identify quantitative trait loci (QTLs) associated with yield components and seed morphology that were expressed in multiple environments. A total of 44 and 34 multi‐environment QTLs were identified in the BP025 and RP883 populations, respectively. As expected, genetic loci known to govern domestication and development were associated with some of the QTLs, but novel QTLs derived from the cultivated emmer parents and associated with yield components including spikelet number, grain weight, and grain size were identified. These QTLs offer new target loci for durum wheat improvement, and toward that goal, we identified five RILs with increased grain weight and size compared to the durum parents. These materials along with the knowledge of stable QTLs and associated markers can help to expedite the development of superior durum varieties.